Série 1 : Force de Coulomb

Exercice 1.1:

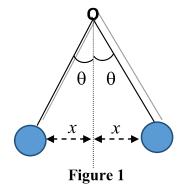
L'électron de masse m_e et le proton de masse m_p d'un atome d'hydrogène sont séparés, en moyenne, par une distance $r = 0.53 \ 10^{-10} \ m$. Comparer les forces électriqueet gravitationnelle qui s'exercent entre ces deux particules.

On donne: $G = 6.67 \cdot 10^{-11} \text{ SI}, m_p = 1836 \cdot m_e, m_e = 9.1 \cdot 10^{-31} \text{ kg}, K = 9 \cdot 10^9 \text{ SI et e} = 1.6 \cdot 10^{-19} \text{C}.$

Exercice 1.2:

Deux sphères conductrices identiques, de masse m=10g, portent les charges q_1 et q_2 ; on les met en contact, puis on les sépare.

1°) Calculer les charges q_1 et q_2 qu'elles prennent pour les cas suivants :


a)
$$q_1 = +3 \cdot 10^{-8}$$
C et $q_2 = 0$ C.

b)
$$q_1 = +3 \cdot 10^{-8}$$
C et $q_2 = +8 \cdot 10^{-8}$ C.

c)
$$q_1 = +3 \cdot 10^{-8}$$
C et $q_2 = -8 \cdot 10^{-8}$ C.

Préciser à chaque fois le sens du transfert d'électrons.

2°)Les deux masses sont suspendues, en un même point O, par deux fils identiques en nylon de longueur 1=80cm (figure 1). En négligeant la masse des fils, calculer la distance 2x séparant les deux sphères pour les différents cas de 1° (on supposera que l'angle θ est suffisamment petit).

Exercice 1.3:

Deux sphères conductrices identiques portant des charges de signes opposés s'attirent avec une force de $0.108\ N$ quand la distance qui les sépare est $d=0.5\ m$. On les raccorde à l'aide d'un fil conducteur. Après avoir enlevé le fil, elles se repoussent avec une force de $0.036\ N$. Quelle était la charge initiale de chaque sphère?

Exercice 1.4:

Soient trois charges ponctuelles q_1 , q_2 et q_3 aux sommets d'un triangle droit (voir figure 2 ci-contre).

Calculer l'intensité de la force qui s'exerce sur la charge q₃.

A.N.: $a = 10 \text{ cm}, q_1 = 10^{-6} \text{ C}, q_2 = 2 \cdot 10^{-6} \text{ C}$ et $q_3 = -3 \cdot 10^{-6} \text{ C}$.

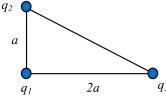
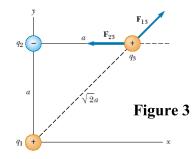
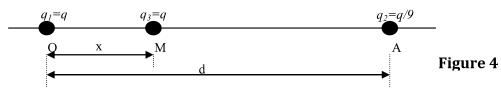



Figure 2

Exercice 1.5:

Considérer trois charges ponctuelles situées aux coins d'un triangle droit isocèle où $q_1 = q_3 = 5 \mu C$, $q_2 = -2.0 \mu C$ et a = 0.10 m (voir figure 3).

Trouver l'intensité et la direction de la force résultante $\overrightarrow{F_3}$ exercée sur q_3 .



Exercice 1.6:

On considère le système de charges ponctuelles représenté sur la figure 4. Les charges positives q_1 et q_2 , distantes de d, sont fixes aux points O et A respectivement. Une troisième charge q_3 est assujettie à se déplacer le long du segment OA.

1°) Donner l'expression de la force qui s'exerce sur q_3 au point M.

2°) A quelle distance $x = x_0$ de q_1 , la charge q_3 est-elle dans une position d'équilibre ? **A.N** : d = 4cm.

